

: Making the Case for IVI

Presented by:

Kirk Fertitta
Chief Technical Officer
Pacific MindWorks

Page 2 of 16

INTRODUCTION

The Interchangeable Virtual Instrument (IVI) Foundation was formed in 1998 with a
charter to simplify test system development and maintenance by standardizing
instrument driver technology. Towards that end, the IVI Foundation composed a series of
specifications to facilitate the development of IVI instrument drivers. Many instrument
manufacturers already have a range of IVI drivers accompanying their instrument
products and more manufacturers are moving to adopt IVI. In addition, the LXI (LAN
eXtensions for Instruments) Consortium has selected IVI as the driver technology for its
important instrument platform. Yet, misinformation and confusion about IVI abound.
Instrument manufacturers unfamiliar with IVI, struggle to compose compelling arguments
justifying an investment in IVI. Subcontractors grapple with IVI driver requirements
cropping up in project specifications. As most of the key participants in IVI are
themselves competing instrument manufacturers, market posturing all too often clouds
the IVI messaging throughout the industry.

This paper presents an objective, comprehensive examination of the benefits of IVI driver
technology. This paper will further explain why there truly are few, if any, compelling
reasons to consider any kind of instrument driver other than an IVI driver.

WHAT IS IVI?

The IVI standard is grouped into three technology areas; 1) a set of instrument class
specifications; 2) a collection of architecture specifications; and 3) a library of shared
software components.1

The class specifications, or instrument classes, define several types of traditional
instruments such as DMMs, function generators, and spectrum analyzers. Each class
specification precisely lays out the required functionality of an instrument class along with

1 IVI also includes two other technologies – Measurement Stimulus Subsystems (MSS) and signal-based drivers.
MSS describes an architecture for achieving even higher degrees of interchangeability than traditional IVI
drivers can achieve. Signal-based IVI drivers bring an ATLAS-style signal-based programming model to IVI. For
purposes of this paper, neither of these technologies will be discussed further.

Page 3 of 16

the detailed application programming interface (API) that class-compliant IVI drivers
must expose.

The IVI architecture specifications cover a broad range of generic functionality that IVI
drivers must support – even if they do not comply with any IVI-defined instrument class.
These specifications prescribe everything from driver installer and help file requirements
to standardized error reporting and API style. Indeed, the IVI architecture specifications
are arguably the most valuable aspect of IVI.

The IVI shared components are a series of freely available and redistributable software
modules developed and maintained by the IVI Foundation. These components are
designed to ensure consistent implementations of important IVI driver features, such as
configuration, error reporting, and multithreading. The IVI shared components must be
installed on any system that will use IVI drivers – be it a driver developer workstation or an
operator test station.

The following illustration shows how the various components of an IVI-enabled test system
fit together.

Page 4 of 16

IT’S NOT ALL ABOUT INTERCHANGEABILITY

By far, the biggest misconception about IVI is instrument interchangeability – the ability to
substitute instruments in a test system without modifying the test program. However,
“true” interchangeability is only achieved when a measurement system produces the
same-answer result with different test equipment. This can prove to be considerably
more difficult than simply outfitting the system with IVI-compliant instrument drivers. While
many test programmers can indeed realize the benefits of interchangeability. Test
systems that use instruments for which an IVI instrument class exists and that use a fairly
modest set of functionality can benefit enormously from interchangeability.

Some of the instruments used in a particular test system may not have an associated IVI
instrument class, making interchangeability impossible. For those instruments that do fall
within an IVI instrument class, it also may be the case that the IVI-defined functionality
covers only a small portion of the instrument’s capability. In fact, as the instrument
complexity goes up, the ability to interchange actually goes down. Modern spectrum
analyzers, for example, typically have much more functionality than is defined in the IVI
spectrum analyzer instrument class. Test programs that use functionality outside of the
class specification are obviously not interchangeable.

Confronted with the preceding interchangeability challenges, some manufacturers and
test programmers choose to not consider IVI any further. Some even go so far as to
completely dismiss IVI if their instrument does not comply with an existing IVI-defined
instrument class. These manufacturers and test programmers often make these decisions
without a full understanding of everything IVI offers.

WHAT COMPLIANCE REALLY MEANS

For the manufacturer and the programmer alike, it’s important to understand the
meaning of IVI compliance. There are essentially two “degrees” or “levels” of IVI
compliance – basic compliance and instrument class compliance. What many fail to
recognize is that they can author a fully compliant IVI driver for an instrument that does
not support any IVI-defined instrument class. IVI defines a number of standard functions
and features that compliant drivers must support, as well as numerous other architectural
requirements that drivers must meet. These capabilities and requirements are
completely independent of whether the driver supports an IVI-defined instrument class.
Drivers with this basic level of compliance can be advertised as being fully IVI compliant

Page 5 of 16

and can be used in development environments that support IVI drivers. Such a driver
even meets the IVI driver requirements of the LXI Consortium for instruments that want to
advertise LXI compliance. Moreover, drivers that support this basic level of compliance
offer all of the same features and benefits as class-compliant IVI drivers, with the sole
exception of interchangeability.

The second level of IVI compliance is IVI class-compliance. If an instrument falls into one
of the IVI-defined instrument classes, such as DMM, oscilloscope, or function generator,
then it is possible to create an IVI driver that supports the IVI-defined interfaces for the
corresponding instrument class. Class-compliant drivers have the same features,
benefits, and architectural requirements as non-class-compliant drivers – with the added
benefits of interchangeability.

TYPES OF IVI DRIVERS

IVI drivers currently come in two versions – IVI-COM and IVI-C. IVI-COM drivers use
Microsoft COM technology to expose driver functionality, while IVI-C drivers use
conventional Windows DLLs to export simple C-based functions. Both of these interface
technologies can be used to implement any degree of IVI compliance – basic
compliance or full instrument class compliance. However, it is crucial to understand the
important differences between IVI-COM and IVI-C drivers before making a decision on
which technology to adopt. Though the prime purpose of this paper is to communicate
the benefits of IVI in general, some of the benefits are unique to IVI-COM.

At the time of this writing, the IVI Foundation also is well on its way to completing new
standards for building IVI.NET drivers. Developers will be able to produce these drivers
using any .NET language – such as C#, Visual Basic.NET, and Visual C++.NET. IVI.NET
drivers will expose native .NET interfaces to simplify integration with .NET applications. The
arguments presented in this paper apply equally well to the upcoming IVI.NET driver
standards.

ONE DRIVER TO RULE THEM ALL

One of the principal challenges instrument manufacturers and software integrators face
in the Test and Measurement industry is adapting their software to a profusion of
application development environments (ADEs). Some users may choose Visual Basic, C#,
MATLAB, or Agilent VEE, while other users need to work in National Instruments
LabWindows or LabVIEW. Before IVI, the driver strategy that many instrument
manufacturers pursued was to develop, distribute, and maintain separate drivers for

Page 6 of 16

each environment they wanted to target. LabVIEW customers required LabVIEW drivers,
while Visual Basic customers required a Visual Basic driver. This led to duplicate work and
increased overall cost. As a matter of practicality, manufacturers also would have to
choose a subset of ADEs to support, and this would invariably alienate or frustrate that
segment of customers working in one of the unsupported ADEs.

IVI drivers truly provide the ability to develop a single driver and provide a first-class user
experience in virtually every popular ADE. Beyond anything else, this is far and away the
single most important benefit of IVI. IVI-COM drivers work seamlessly in nearly all ADEs,
including:

• Visual Basic 6.0
• Visual C++ 6.0
• Visual C#
• Visual Basic.NET
• VBA environments (Excel, Word, PowerPoint, etc.)
• MATLAB
• Agilent VEE
• LabVIEW

IVI-COM drivers inherit this seamless integration benefit largely, but not entirely, from the
COM technology on which they are based. COM is ubiquitous on the Microsoft platform,
and most development environments provide a first-class user experience with any COM
component – including IVI-COM drivers. Even with the arrival of Microsoft’s latest client
operating system, Windows Vista, COM remains pervasive. Most core operating system
features in Windows Vista continue to be implemented using COM – not .NET, as many
would be led to believe. Suffice it to say, COM will remain an important component
technology on Windows for the foreseeable future.

IVI-C drivers round out the ADE coverage of IVI by catering to National Instruments
LabWindows/CVI. The IVI specifications even prescribe how to author a driver that
exposes both IVI-COM and IVI-C interfaces from a single driver DLL. This gives complete
coverage of all important ADEs with a single driver. Some driver development tools, such
as Pacific MindWorks’ Nimbus Driver Studio, provide automatic support for building these
kinds of “dual-mode” drivers.

USER FAMILIARITY

One of the most effective ways to frustrate test programmers is to provide them with a
dozen different ways to accomplish the same common programming tasks. Without a

Page 7 of 16

standard driver technology such as IVI, this is precisely what test programmers are
confronted with. By following the IVI standard, manufacturers provide the test
programmer with a driver that is at least familiar, if not completely interchangeable. If
the user has worked with any other IVI driver from any other vendor at any point in their
career (and the chances of this are increasing every day), then they will instantly know
how to at least perform some basic tasks with any new IVI driver they encounter. They
also will know how to access instrument-specific and other advanced features of the
driver. The net result is a tremendous advantage in the “out-of-the-box” experience with
an instrument manufacturer’s product.

Many simple tasks, often taken for granted, cause a great deal of test programmer
confusion if not performed in a standard fashion. Driver instantiation, initialization, and
shutdown are some of the most basic tasks every test programmer must perform. Every
IVI driver provides the same functions for performing these basic operations. The specific
behavior of these functions, with respect to resource management and instrument I/O,
also is prescribed by IVI. If a test programmer can quickly create a simple program that
communicates with a newly received instrument, then that will positively influence their
initial overall satisfaction.

Configuration and installation also are common tasks that test programmers need to be
able to perform without having to learn something new. The IVI Configuration Store
provides a single location where the user can, at a minimum, discover what drivers are
installed on their system. They can further discover a number of important details about
their driver, such as the type of driver (IVI-COM or IVI-C), specific instrument models it
supports, and the IVI interfaces it exposes. Without a standardized driver, programmers
might have to dig through any number of header files, registry settings, help documents,
and readme files. Simply having a single, well-known place to set the instrument’s I/O
resource address provides a very real test programmer benefit.

Instruments often contain multiple instances of the same type of functionality. An
oscilloscope, for instance, might have several channels with the same measurement
capabilities, or a spectrum analyzer might support multiple traces from a series of
acquisitions. IVI refers to these as repeated capabilities and provides a uniform
mechanism for accessing them. Test programmers work with the same well-known
methods and properties for discovering repeated capabilities, iterating through a list,
accessing a specific repeated capability, and even applying a user-specified virtual
name to selected repeated capabilities. Since all but one of the existing IVI instrument
classes define repeated capabilities, it’s important to provide a consistent, familiar and
easy-to-use interface.

Page 8 of 16

Another excellent example of a seemingly benign task that causes a surprising amount
of programmer frustration is basic error reporting. Windows provides a dizzying array of
options for reporting errors to application programs. One can use simple return codes or
perhaps COM HRESULTs (both of which can easily be ignored by the test programmer’s
application). Alternatively, components can use the GetLastError/SetLastError idiom,
which the test programmer only knows about from reading the documentation. These
functions are thread-based and can easily produce erroneous results (errors within errors)
if used improperly. Windows also offers a couple of exception types -- structured
exceptions and C++ exceptions, which the user must be careful not to mix within an
application. COM adds to this its own error-reporting mechanism via the IErrorInfo
interface.

With drivers, the error reporting situation is further complicated by the need to support at
least three sources of errors – those coming from the driver, those coming from the I/O
layer (such as VISA) and those coming from the instrument itself. IVI standardizes error
reporting, so the programmer has a well-known set of functions for enabling error
reporting, discovering if an error has occurred, and retrieving detailed error information.
Without such standardization, the test programmer is left to contend with any number of
unfamiliar error reporting schemes. IVI goes one step further by providing shared
software components that assist driver developers in implementing features such as error
reporting, thereby improving consistency across manufacturers.

TOOLS, TOOLS, TOOLS

What often makes a software standard compelling is the quality and availability of tools.
With IVI, there is no shortage of developer and test programmer tools on the market.
Even though IVI drivers are internally more complex and offer a broader array of features
than other types of drivers, the robust tooling makes IVI drivers easier to develop than
non-standard drivers. Consider, for example, the inherent complexity in building a COM
component. Most instrument manufacturers have limited, or no experience with COM.
Constructing a COM-based driver without a tool is simply impractical for most companies
in the industry. Because IVI standardizes on how COM components should be
constructed, documented, and deployed, software tools are available to automatically
handle the required code generation. As a result, the test programmer is insulated from
the intricacies of COM. For example, Pacific MindWorks’ Nimbus Driver Studio is a
software tool that greatly reduces the amount of time it takes to write an IVI-COM driver.

Page 9 of 16

Tooling is what makes standards thrive, and it is encouraging to survey some of the
currently available tools with built-in IVI support.

• Agilent VEE
• Agilent T&M Toolkit
• The MathWorks MATLAB
• National Instruments LabWindows/CVI
• National Instruments LabVIEW
• National Instruments Measurement Automation Explorer
• National Instruments TestStand
• National Instruments Signal Express
• Pacific MindWorks Nimbus
• Teradyne TestStudio
• TYX PAWS

By furnishing an IVI driver with its instruments, the instrument manufacturers’ products will
instantly integrate into any of these environments, as well as a number of others. The
usability and accessibility of their instrument will automatically improve – with no
additional effort required on their part.

TRACKING THE STANDARDS

IVI drivers are coupled to a variety of disparate standards and Windows technologies.
Without exception, these standards are moving targets – continually evolving and
growing. Drivers must track all of these changes, irrespective of whether the drivers are
IVI drivers or not. Most fundamentally, drivers must keep pace with changes in the
Windows platform itself. Some of the Windows technologies on which a driver must rely
include Windows Installer, Windows help, the .NET platform, the Windows API, and
security. Important ADEs, such as Microsoft Visual Studio also are moving targets, and
the IVI Foundation goes to great lengths to ensure IVI drivers operate well in such
environments. All of these technologies require considerable expertise to master and a
great deal of resources to track.

Windows Vista introduces a host of new challenges, as does 64-bit application
development. Each standard and operating system must be carefully studied and
followed if drivers are to remain robust, performant, and easy to use. Most instrument
manufacturers and test programmers find this a daunting challenge and have neither
the resources nor the desire to commit to tracking a large number of software
technologies. This is where the IVI Foundation provides enormous value.

Page 10 of 16

Many members of the IVI Foundation provide a wide array of software products to the
Test and Measurement industry. Consequently, they must, for their own interests,
carefully track the same set of software and hardware standards on which drivers rely. In
order to guarantee their products continue to support IVI, members must ensure that IVI
drivers evolve with these standards correctly and in a timely fashion. To that end,
member companies bring considerable software talent to the IVI Foundation meetings to
address how IVI should evolve to meet the changing software landscape. Much of the
real detailed work required to incorporate new technology into IVI also is done outside of
the IVI meetings, typically at the member company facilities using the company’s own
R&D resources. When the collective knowledge of all of these resources is harnessed at
the IVI Foundation meetings, the group is very well empowered to keep IVI moving in the
right direction. In a very real sense, all IVI users are directly leveraging the valuable
software talent of numerous test and measurement industry leaders.

WHAT COM BRINGS TO THE TABLE

A large part of what IVI-COM drivers have to offer derives from the core technology on
which they are based – the Microsoft COM technology. While a detailed discussion of
COM is beyond the scope of this paper, it is nonetheless instructive to briefly examine
how COM dramatically improves driver technology. The most obvious benefit of COM is
that it is supported across a very large number of ADEs. Environments such as Microsoft
Visual Studio provide numerous features for seamlessly integrating COM components in
any kind of application – from Visual Basic 6 applications to Visual C#.NET applications.
Usability features, such as object browsers and IntelliSense, all operate based upon COM
and IVI-COM drivers inherit all of these benefits.

COM is a binary standard, and as such, allows any combination of programming
language or compiler to be employed. This also means that components from different
software manufacturers can interoperate safely and reliably. By contrast, Windows DLLs
– considered by some to be a component technology – are really just a distribution
standard and do not address some of the basic interoperability issues with software.
Without a binary standard such as COM, compiler manufacturers often elect to
implement language features in a proprietary manner, rendering components that are
“untouchable” by code generated from other manufacturers’ compilers. C++ exception
handling is an excellent example of such a feature. A C++ exception output from a
function compiled with Compiler A cannot reliably be caught by the test programmer’s
code from Compiler B. On the other hand, COM error handling works seamlessly across
processes and computers and between components built with different compilers.

Page 11 of 16

COM also offers a very powerful feature known as location transparency. Simply stated,
COM allows test programs to communicate with components without regard to whether
those components are running in the same process, in a different process, or even on
another computer on a network. In the cross-process case, remote communication is
completely implemented by the COM runtime, with no extra work required of the driver
developer or the test programmer. In the absence of this feature, IVI-COM test
programmers would have to contend with low-level, inter-process communication
facilities, such as sockets, named pipes, or memory mapped files.

Finally, COM provides the ability to mix and match components with very different
degrees of thread safety – all within the same application. Some components are
authored by developers with multi-threaded applications in mind. These developers
want to maximize the performance of their components, but they must take great care
to ensure internal data is protected from concurrent access. Other components,
perhaps legacy components, have not at all been authored with multi-threaded access
in mind. For these thread-unaware components, the COM runtime automatically injects
itself between multi-threaded callers and the component in order to serialize access to
the component.2 In this way, COM layers multi-thread safety on top of components that
otherwise could not be used in multi-threaded scenarios.

INDUSTRY MOMENTUM

Good standards are often built upon other good standards. Important associations
within the test and measurement industry have decided upon IVI as their driver
technology of choice. The LXI Consortium requires an IVI driver to be provided with any
device claiming LXI compliance. The LXI Consortium recommends IVI-COM, although
IVI-C is considered acceptable. As one of the most promising, active and dynamic
standards bodies in the industry today, LXI lends a considerable amount of credence to
IVI by relying on IVI for LXI’s standard software interface.

The Synthetic Instrument Working Group (SIWG) is an industry body, sponsored by the
Department of Defense, that is tasked with defining an architecture for building test
systems composed of generic hardware and software modules. Instead of using

2 COM accomplishes this by creating a hidden Window that continually pumps messages from other
components, serializes them, and then dispatches them one at a time to the target component. This ensures
no more than one method call lands on the component at a time. The process is similar to how Windows
messages from multiple input devices (keyboard, mouse, etc.) are serialized and dispatched to listening
applications.

Page 12 of 16

complex, multi-function instruments (such as a spectrum analyzer or “one-box” tester),
synthetic instrument (SI) systems use more fundamental components, such as a high-
speed digitizer coupled with standardized software. Rather than being tied to a
particular vendor, test programmers can develop systems with best-in-breed
components that fill multiple roles. As with the LXI Consortium, the SIWG is developing IVI
instrument classes for SIWG’s standard software interface to SI devices.

The SCPI standard and the VXI Plug-n-Play standard are two mature and pervasive
standards that are now part of the IVI Foundation. In order to facilitate long-term
maintenance and to ensure consistency with future software standards, both of these
organizations felt it was best to be acquired by the IVI Foundation.

All of the industry bodies that are turning to IVI for software standardization give
testimony to the argument that IVI will continue to grow and that future industry
organizations will look to IVI for driver technology.

USABILITY IN .NET

As mentioned previously, the IVI Foundation is currently developing standards for
constructing native IVI.NET drivers. While these drivers will offer a number of compelling
benefits, existing IVI-COM driver technology provides an excellent experience for test
programmers working in .NET languages, such as C# and Visual Basic.NET. IVI-COM
drivers can be supplied with special .NET wrappers known as interop assemblies. These
interop assemblies make the IVI-COM driver appear to .NET clients as if it were a native
.NET component. Thus, these drivers can be seamlessly integrated into .NET applications.

IVI currently supports .NET in two ways: 1) providing, as part of the shared software
components, pre-built interop assemblies for all of the IVI-defined instrument classes; and
2) providing an IVI specification that explains how to create interop assemblies for
instrument-specific functionality. As with many other aspects of driver development, the
Microsoft-provided tools and processes for constructing interop assemblies leave too
much ambiguity to ensure consistency between IVI drivers. Thus, the IVI interop assembly
specification was developed to augment the standard Microsoft process with more
precise rules for IVI drivers. For example, the interop assembly produced by using Visual
Studio and its default settings is often incompatible with the one produced using the
command line – even though the underlying interop utility (tlbimp.exe) is the same and

Page 13 of 16

the underlying IVI-COM driver is the same.3 The IVI interop assembly specification
instructs the driver developer on how to avoid these subtle pitfalls.

DESIGN FLEXIBILITY

A common misperception about IVI drivers is that the design of the driver interface is too
restrictive. Developers look at the IVI-defined interfaces for a particular instrument class
and immediately conclude that IVI is not suitable for them because their device supports
a broader array of functionality than IVI specifies or because their device models
instrument behavior very differently than IVI does. In fact, IVI drivers are composed of
two sets of functionality – class-compliant functionality defined by IVI and instrument-
specific functionality defined by the instrument manufacturer. The class-compliant
functionality is actually optional, so manufacturers who do not feel their instrument
matches an IVI definition at all can simply choose to ignore the class specifications. The
resulting driver can still be IVI compliant, as discussed earlier in the section entitled What
Compliance Really Means.

The instrument-specific functionality in an IVI driver need not follow any prescribed set of
functionality. Rather, driver developers have tremendous freedom in designing a driver
interface that is intuitive for their particular customer base. Many IVI experts argue that
the instrument-specific interfaces are the most important part of an IVI driver because
they expose the unique features of the instrument – features which may have been the
primary reason the customer selected the instrument in the first place. It is important to
understand that a fully compliant IVI interface can easily be designed to accommodate
virtually any way of abstracting the instrument’s functionality.

In addition to giving the driver developer design flexibility, IVI provides a series of design
guidelines to follow that ensure the driver works well in most ADEs. A great deal of effort
has been invested by IVI Foundation members to explore and document subtle design
requirements that, if ignored, would render many drivers unusable in certain
environments. For example, one rule of IVI-COM interface design is that methods cannot
have more than one output-only parameter. If multiple output parameters are needed,
then they must be specified as input-output (two-way) parameters. The reason is that
Visual Basic 6 will leak memory if a method has more than one output-only parameter.

3 A specific incompatibility that can occur is when the driver uses array parameter types. This is, of course, quite
common in IVI driver designs. Visual Studio will, by default, expose arrays as the .NET System.Array data type,
while the command line utility tlbimp will expose arrays as strongly typed arrays, such as double[].

Page 14 of 16

Memory leaks in applications are notoriously difficult to find and they often are even
more difficult to fix once they have been located. Without the IVI specifications to guide
them in their designs, many driver developers would fall into this trap and most would
have great difficulty understanding what was going on.

IVI drivers also are constructed in hierarchies of methods and properties. This makes it
easy for test programmers to navigate the available functionality of the instrument.
These hierarchies are particularly important for instruments with large functional surface
areas, such spectrum analyzers and RF signal generators. The IVI specifications provide
guidance on how to properly construct these hierarchies so that they are usable in a
wide variety of ADEs.

EXTENDED DRIVER FEATURES

The IVI specifications describe four features of IVI drivers which provide unique
capabilities beyond other driver technologies. These features are range checking,
coercion recording, state caching, and simulation.

Range checking in IVI drivers validates input parameters against valid values accepted
by the instrument. Often, range checking is performed within the instrument itself.

Coercion recording allows test programmer applications to query the driver for cases
where parameters passed into a driver method or property had to be changed by the
driver to values suitable for the instrument. For instance, a particular DMM may accept
voltage range settings of 3, 30, and 300 Volts. When a test programmer’s application
attempts to set the voltage range to a value of 50, the driver may change the value to
300 to ensure the instrument is properly configured to perform the desired measurement.
IVI drivers internally take note of these changes and store them for retrieval by test
programmer’s applications.

State caching is an optional feature of IVI drivers and can improve overall test
application performance by eliminating redundant instrument I/O calls. When an
application sets a property on an IVI driver to a new value, the driver stores this value in
local memory. Subsequent queries for that property are serviced by directly accessing
local memory, rather than by performing a time-consuming instrument I/O call. Similarly,
subsequent calls to set the value of the property will not trigger an I/O operation unless
the value supplied is different than the one stored in the driver’s local memory cache.

Page 15 of 16

Simulation is by far the most important IVI driver feature. Consequently, the IVI
specifications require that all IVI drivers implement simulation. When simulation is
enabled, the IVI driver performs no instrument I/O. Rather, it synthesizes values for output
parameters so that test programmers can begin developing and testing their
applications without requiring an actual instrument. With long procurement cycles for
many types of instruments, having physical access to an instrument is a luxury many test
system developers do not always enjoy. The simulation support provided by IVI drivers is
indispensable in such situations.

Not only do the IVI specifications explain how these features should work, they also
specify the functions that must be exposed so that the test programmer can control
these driver behaviors. Standard functions mean that test programmers have a
common, well-defined mechanism for enabling state caching, range checking, and
simulation and for reading coercion information from the driver. This improves the test
programmer’s overall comfort level and confidence in building their application.

BACKWARDS COMPATIBILITY WITH VXI PLUG-N-PLAY

IVI-C drivers are built on many of the same fundamental technologies as previous-
generation VXI Plug-n-Play drivers. Users familiar with VXI Plug-n-Play (PnP) drivers will find
using IVI-C drivers very familiar and natural. IVI-C drivers use the same data types as PnP
drivers, such as ViStatus, ViSession, ViInt32, and ViBoolean. The details and
hierarchy of IVI-C functions and attributes are represented in the same function panel
(.fp) files and attribute information (.sub) files as PnP drivers. IVI-C drivers also use the
exact same attribute programming model as PnP. Specifically, IVI-C drivers use functions
such as SetAttributeViInt32 along with a #define’d constant to set the values of driver
attributes. This is a familiar idiom for programmers experienced with PnP drivers. Error
handling also builds upon the existing PnP specifications.

The IVI Foundation even went so far as to break its own naming conventions in certain
places in order to facilitate backwards compatibility with PnP. IVI requires that driver
functions start with an uppercase character. Yet, some IVI-C functions, such as init,
close, and reset, all start with a lowercase character because that is how these
functions were defined by the VXI Plug-n-Play standards.

Page 16 of 16

CONCLUSION

The IVI standard is widely misunderstood and often mis-marketed – even by some of its
staunchest proponents. While interchangeability does work in a number of scenarios, IVI
offers test programmers many more benefits than interchangeability. Above all,
instrument manufacturers can focus their energies on developing and maintaining a
single driver that will provide a first-class user experience in a wide variety of
development environments. The collective expertise of IVI Foundation member
companies is continually applied to ensure IVI drivers stay in lock step with the ever-
changing software and hardware landscape and that test programmers will enjoy a
consistent and familiar experience with IVI drivers. An impressive array of IVI-enabled
tools is available from an assortment of suppliers, and more IVI tools are on the way. As
LXI instruments continue to emerge, IVI drivers will become more pervasive, establishing
not only a core industry competency and comfort level in their use, but in fact creating a
fundamental end-user expectation. Taken as a whole, IVI offers more to test
programmers, driver developers, and instrument manufacturers than any other driver
option. There are truly few, if any, reasons to consider anything else.

	INTRODUCTION
	WHAT IS IVI?
	IT’S NOT ALL ABOUT INTERCHANGEABILITY
	WHAT COMPLIANCE REALLY MEANS
	TYPES OF IVI DRIVERS
	ONE DRIVER TO RULE THEM ALL
	USER FAMILIARITY
	TOOLS, TOOLS, TOOLS
	TRACKING THE STANDARDS
	WHAT COM BRINGS TO THE TABLE
	INDUSTRY MOMENTUM
	USABILITY IN .NET
	DESIGN FLEXIBILITY
	EXTENDED DRIVER FEATURES
	BACKWARDS COMPATIBILITY WITH VXI PLUG-N-PLAY
	CONCLUSION

